

DiaSorin Italia S.p.A. Via Crescentino snc - 13040 Saluggia (VC) - Italy www.diasorin.com Tel. +39.0161.4871

((

Changes: §4, §6; Deletions: -

LIAISON® Borrelia IgM II (REF 310010)

1. INTENDED USE

The LIAISON® Borrelia IgM II assay uses chemiluminescence immunoassay (CLIA) technology for the qualitative determination of specific IgM antibodies to *Borrelia burgdorferi sensu lato* (including strains *Borrelia burgdorferi sensu strictu, Borrelia garinii, Borrelia afzelii*) in human serum or plasma samples. The test has to be performed on the LIAISON® Analyzer family*.

2. SUMMARY AND EXPLANATION OF THE TEST

Discovered in 1982, the bacterium *Borrelia burgdorferi* is the aetiologic agent of Lyme borreliosis, a disease which is transmitted by different tick species of the genus Ixodes. Lyme borreliosis is a multisystemic disorder that can affect several organs, such as skin, nervous system, large joints and cardiovascular system. Even though Lyme disease spirochaetes elicit a vigorous immune response, *Borrelia* bacteria survive and persist in the circulation of infected patients. Similarly to syphilis, Lyme borreliosis generally progresses through different clinical stages, from early to late infection:

- Stage 1: skin lesion at the site of tick bite; early infection with localized exanthema (erythema chronicum migrans, EM)
 may be followed by disseminated infection if untreated.
- Stage 2: neurological disorders (neuroborreliosis).
- Stage 3: arthritis, that can be observed even years after infection.

Similarity of clinical symptoms between Lyme borreliosis and unrelated diseases poses diagnostic concerns due to variety of highly variable manifestations. Diagnosis of borreliosis may be difficult on the basis of clinical findings especially in the absence of an anamnesis of tick bite or of erythema chronicum migrans. In addition, the disease may remain asymptomatic until later stages. When erythema chronicum migrans is absent, clinical manifestations of human granulocytic ehrlichiosis (HGE) – when occuring in the same tick-infected areas where borreliosis is reported – can be confused with those of Lyme borreliosis

As a consequence, clinicians rely on antibody detection to determine the cause of illness. The use of whole-cell sonicated Borrelia burgdorferi can yield well-documented false-positive results, due to cross-reactivity of specific antibodies with proteins having high homology with various bacterial pathogens, especially Treponema pallidum, the aetiologic agent of syphilis. Diagnostic tests using bacterial lysate such as antigen, even from different strains of Borrelia burgdorferi, frequently fail to achieve conclusive results in the early stage of infection.

LIAISON® Borrelia assays use specific recombinant antigens obtained in *E. coli* to increase accuracy of Lyme borreliosis diagnosis. LIAISON® Borrelia IgM kits feature solid phase coated with the outer surface protein OspC, immunodominant for IgM response in the early phase of infection, as well as the recently identified *Borrelia* antigen VIsE (variable major protein-like sequence, expressed). LIAISON® Borrelia IgG employs *Borrelia* antigen VIsE only. VIsE is an outer surface lipoprotein thought to play a major role in the immune response to Lyme disease. It contains conserved regions (which serve as *in vivo* transmembrane domains), variable and invariable regions (exposed outside the bacterial membrane). The variable regions consistently undergo sequence variation by recombination during infection. Antigenic variation of surface-exposed proteins has been identified as an important immune evasion mechanism. Six invariable regions (IR 1-6) are interspersed within the variable domain, conserved among strains and genospecies of *Borrelia burgdorferi sensu lato* complex. In living *Borrelia* bacteria the invariable regions are masked by the variable regions, and thus protected from direct attack by the host immune system. *Borrelia* bacteria are processed by antigen-presenting cells that expose the protein to the immune system. Interestingly, the invariable regions are immunodominant in Lyme borreliosis. Lyme disease patients consistently produce a strong antibody response against VIsE, in all stages of disease, including the early stages. This reactivity, detected by Western blotting using recombinant VIsE, is absent or decreased in intensity when whole-cell lysate from low-passage-number in *in vitro* cultured *Borrelia burgdorferi* is used as an antigen. Recombinant VIsE is the most suitable marker for laboratory diagnosis, for both early and late immune response in Lyme borreliosis, showing high diagnostic sensitivity and specificity.

3. PRINCIPLE OF THE PROCEDURE

The method for qualitative determination of specific IgM to *Borrelia burgdorferi* is an indirect chemiluminescence immunoassay (CLIA). Recombinant antigens are used for coating magnetic particles (solid phase) and a mouse monoclonal antibody is linked to an isoluminol derivative (isoluminol-antibody conjugate). During the first incubation, *Borrelia burgdorferi* antibodies present in calibrators, samples or controls bind to the solid phase. During the second incubation, the antibody conjugate reacts with IgM to *Borrelia burgdorferi* already bound to the solid phase. After each incubation, the unbound material is removed with a wash cycle.

Subsequently, the starter reagents are added and a flash chemiluminescence reaction is thus induced. The light signal, and hence the amount of isoluminol-antibody conjugate, is measured by a photomultiplier as relative light units (RLU) and is indicative of IgM to *Borrelia burgdorferi* concentration present in calibrators, samples or controls.

4. MATERIALS PROVIDED

Reagent integral

Magnetic particles (2.3 mL)	SORB	Magnetic particles coated with OspC (<i>Borrelia afzelii</i> strain pKo) and VIsE (<i>Borrelia garinii</i> strain pBi and <i>Borrelia sensu strictu</i> strain B31) recombinant antigens (obtained in <i>E. coli</i>), BSA, PBS buffer, < 0.1% sodium azide.
Calibrator 1 (0.9 mL)	CAL 1	Human serum/plasma containing low <i>Borrelia burgdorferi</i> IgM levels, BSA, phosphate buffer, 0.2% ProClin™ 300, an inert yellow dye. The calibrator concentrations are referenced to an in-house antibody preparation.
Calibrator 2 (0.9 mL)	CAL 2	Human serum/plasma containing high <i>Borrelia burgdorferi</i> IgM levels, BSA, phosphate buffer, 0.2% ProClin™ 300, an inert blue dye. The calibrator concentrations are referenced to an in-house antibody preparation.
Specimen diluent (28 mL)	DILSPE	BSA, phosphate buffer, 0.2% ProClin™ 300, an inert yellow dye.
Conjugate (23 mL)	CONJ	Mouse monoclonal antibodies to human IgM conjugated to an isoluminol derivative, BSA, phosphate buffer, 0.2% ProClin™ 300, preservatives.
Number of tests		100

All reagents are supplied ready to use. The order of reagents reflects the layout of containers in the reagent integral.

Materials required but not provided (system related)

LIAISON® XL Analyzer	LIAISON® Analyzer
LIAISON® XL Cuvettes (REF X0016).	LIAISON® Module (REF 319130).
LIAISON® XL Disposable Tips (REF X0015) or	
LIAISON® Disposable Tips (REF X0055).	LIAISON® Starter Kit (REF 319102) or
LIAISON® XL Starter Kit (REF 319200) or	LIAISON® XL Starter Kit (REF 319200) or
LIAISON® EASY Starter Kit (REF 319300).	LIAISON® EASY Starter Kit (REF 319300).
_	LIAISON® Light Check 12 (REF 319150).
LIAISON® Wash/System Liquid (REF 319100).	LIAISON® Wash/System Liquid (REF 319100).
LIAISON® XL Waste Bags (REF X0025).	LIAISON® Waste Bags (REF 450003).
_	LIAISON® Cleaning Kit (REF 310990).

LIAISON® XS Analyzer
LIAISON® Cuvettes on Tray (REF X0053).
LIAISON® Disposable Tips (REF X0055).
LIAISON® EASY Starter Kit (REF 319300).
LIAISON® EASY Wash Buffer (REF 319301).
LIAISON® EASY System Liquid (REF 319302).
LIAISON® EASY Waste (REF X0054).
LIAISON® EASY Cleaning Tool (REF 310996).

Additionally required materials

LIAISON® Borrelia IgM Quant controls

LIAISON® Borrelia IgM II controls (negative and positive) (REF 310011).

5. WARNINGS AND PRECAUTIONS

For in vitro diagnostic use.

All serum and plasma units used to produce the components provided in this kit have been tested for the presence of HBsAg, anti-HCV, anti-HIV-1, anti-HIV-2 and found to be non-reactive. As, however, no test method can offer absolute assurance that pathogens are absent, all specimens of human origin should be considered potentially infectious and handled with care.

6. SAFETY PRECAUTIONS

Do not eat, drink, smoke or apply cosmetics in the assay laboratory.

Do not pipette by mouth.

Avoid direct contact with potentially infected material by wearing laboratory clothing, protective goggles, and disposable gloves. Wash hands thoroughly at the end of each assay.

Avoid splashing or forming an aerosol. All drops of biological reagent must be removed with a sodium hypochlorite solution with 0.5% active chlorine, and the means used must be treated as infected waste.

All samples and reagents containing biological materials used for the assay must be considered as potentially able to transmit infectious agents. The waste must be handled with care and disposed of in compliance with the laboratory guidelines and the statutory provisions in force in each Country. Any materials for reuse must be appropriately sterilized in compliance with the local laws and guidelines. Check the effectiveness of the sterilization/decontamination cycle.

Do not use kits or components beyond the expiration date given on the label.

Pursuant to EC Regulation 1272/2008 (CLP) hazardous reagents are classified and labelled as follows:

REAGENTS:	[CAL]1, [CAL]2, [CONJ], [DIL]SPE
CLASSIFICATION	Skin sens. 1A H317 Aquatic chronic 3 H412
SIGNAL WORD:	Warning
SYMBOLS / PICTOGRAMS:	GHS07 Exclamation mark
HAZARD STATEMENTS:	H317 May cause an allergic skin reaction. H412 Harmful to aquatic life with long lasting effects.
PRECAUTIONARY STATEMENTS:	P261 Avoid breathing dust/fume/gas/mist/vapours/spray. P280 Wear protective gloves/protective clothing/eye protection/face protection. P273 Avoid release to the environment. P362 Take off contaminated clothing and wash before reuse.
CONTAINS: (only substances prescribed pursuant to Article 18 of EC Regulation 1272/2008).	reaction mass of: 5-chloro-2-methyl-4-isothiazolin-3-one [EC no. 247-500-7] and 2-methyl-2H -isothiazol-3-one [EC no. 220-239-6] (3:1) (ProClin™ 300).

Pursuant to EC Regulation 1272/2008 (CLP), SORB is labeled as EUH210 safety data sheets available on request.

For additional information see Safety Data Sheets available on www.diasorin.com.

7. REAGENT PREPARATION

REAGENT INTEGRAL

Please note the following important reagent handling precautions:

Resuspension of magnetic particles

Magnetic particles must be completely resuspended before the integral is placed on the instrument. Follow the steps below to ensure complete suspension:

Before the seal is removed, rotate the small wheel at the magnetic particle compartment until the colour of the suspension has changed to brown. Gentle and careful side-to-side mixing may assist in the suspension of the magnetic particles (avoid foam formation). Visually check the bottom of the magnetic particle vial to confirm that all settled magnetic particles have resuspended. Carefully wipe the surface of each septum to remove residual liquid.

Repeat as necessary until the magnetic particles are completely resuspended.

Foaming of reagents

In order to ensure optimal performance of the integral, foaming of reagents should be avoided. Adhere to the recommendation below to prevent this occurrence:

Visually inspect the reagents, calibrators in particular (position two and three following the magnetic particle vial), to ensure there is no foaming present before using the integral. If foam is present after resuspension of the magnetic particles, place the integral on the instrument and allow the foam to dissipate. The integral is ready to use once the foam has dissipated and the integral has remained onboard and mixing.

Loading of integral into the reagent area

Warning - Before removing the seals from the vials and before each calibration, gently shake the reagent integral avoiding foam formation.

LIAISON® Analyzer

- Place the integral into the reagent area of the analyzer with the bar code label facing left and let it stand for 30 minutes before using. The analyzer automatically stirs and completely resuspends the magnetic particles.
- Follow the analyzer operator's manual to load the specimens and start the run.

LIAISON® XL and LIAISON® XS analyzers

- LIAISON® XL Analyzer and LIAISON® XS Analyzer are equipped with a built-in solid-state magnetic device which aids in the dispersal of microparticles prior to placement of a reagent integral into the reagent area of the analyzer. Refer to the analyzer operator's manual for details.
 - a. Insert the reagent integral into the dedicated slot.
 - b. Allow the reagent integral to remain in the solid-state magnetic device for at least 30 seconds (up to several minutes). Repeat as necessary.
- Place the integral into the reagent area of the analyzer with the label facing left and let it stand for 15 minutes before using.
 The analyzer automatically stirs and completely resuspends the magnetic particles.
- Follow the analyzer operator's manual to load the specimens and start the run.

CONTROLS

Refer to the LIAISON® Borrelia IgM Quant / Borrelia IgM II Control Set instructions for use section for proper preparation and handling instructions.

8. REAGENT INTEGRAL STORAGE AND STABILITY

- Sealed: Stable at 2-8°C until the expiry date.
- Opened on board or at 2-8°C: Minimum stability four weeks.
 - After this period, it is still possible to keep on using the reagent integral provided that the controls are found within the expected ranges.
- Use always the same LIAISON® Analyzer for a reagent integral already opened.
- Use storage rack provided with the LIAISON® Analyzer for upright storage of reagent integral.
- Do not freeze.
- Keep upright for storage to facilitate later proper resuspension of magnetic particles.
- Keep away from direct light.

9. SPECIMEN COLLECTION AND PREPARATION

Either human serum or plasma may be used. The anticoagulants citrate, EDTA and heparin have been tested and may be used with this assay. Blood should be collected aseptically by venipuncture, allowed to clot, and the serum separated from the clot as soon as possible. Samples having particulate matter, turbidity, lipaemia, or erythrocyte debris may require clarification by filtration or centrifugation before testing. Grossly haemolyzed or lipaemic samples as well as samples containing particulate matter or exhibiting obvious microbial contamination should not be tested. Check for and remove air bubbles before assaying. If the assay is performed within seven days of sample collection, the samples may be kept at 2-8°C; otherwise they should be aliquoted and stored deep-frozen (-20°C or below). If samples are stored frozen, mix thawed samples well before testing. Ten samples with different reactivity were stored for seven days at 2-8°C and underwent four freeze-thaw cycles. The results showed no significant differences. The minimum volume required for a single determination is 180 μ L specimen (30 μ L specimen + 150 μ L dead volume). No further manipulation is required, because the instrument automatically dilutes specimens before testing.

10. CALIBRATION

Test of assay specific calibrators allows the detected relative light unit (RLU) values to adjust the assigned master curve. Each calibration solution allows eight calibrations to be performed.

Recalibration in triplicate is mandatory whenever at least one of the following conditions occurs:

- A new lot of Starter Kit is used.
- The previous calibration was performed more than one week before.
- Each time a new lot of integral is used.
- Control values lie outside the expected ranges.
- LIAISON® and LIAISON® XL analyzers: The analyzer has been serviced.
- LIAISON® XS Analyzer: After a technical intervention, only if required by the service procedure, as communicated by local DiaSorin technical support or representative.

LIAISON® Analyzer: Calibrator values are stored in the bar codes on the integral label.

LIAISON® XL Analyzer: Calibrator values are stored in the reagent integral Radio Frequency IDentification transponder (RFID Tag).

LIAISON® XS Analyzer: Calibrator values are stored in the reagent integral Radio Frequency Identification Transponder (RFID Tag).

Warning - Before removing the seals from the vials and before each calibration, gently shake the reagent integral avoiding foam formation.

11. ASSAY PROCEDURE

Strict adherence to the analyzer operator's manual ensures proper assay performance.

LIAISON® Analyzer. Each test parameter is identified via the bar codes on the reagent integral label. In the event that the barcode label cannot be read by the analyzer, the integral cannot be used. Do not discard the reagent integral; contact your local DiaSorin technical support for instruction.

LIAISON® XL and LIAISON® XS analyzer. Each test parameter is identified via information encoded in the reagent integral Radio Frequency IDentification transponder (RFID Tag). In the event that the RFID Tag cannot be read by the analyzer, the integral cannot be used. Do not discard the reagent integral; contact your local DiaSorin technical support for instruction.

The analyzer operations are as follows:

- 1. Dilute specimens with Specimen diluent.
- 2. Dispense Specimen diluent.
- 3. Dispense coated magnetic particles.
- 4. Dispense calibrators, controls or diluted specimens into the reaction module.
- 5. Incubate.
- 6. Wash with Wash/System liquid.
- 7. Dispense conjugate into the reaction module.
- 8. Incubate.
- 9. Wash with Wash/System liquid.
- 10. Add the Starter Kit and measure the light emitted.

12. QUALITY CONTROL

LIAISON® controls should be run in singlicate to monitor the assay performance. Quality control must be performed by running LIAISON® Borrelia IgM Quant / Borrelia IgM II controls

- (a) at least once per day of use,
- (b) whenever a new reagent integral is used,
- (c) whenever the kit is calibrated,
- (d) whenever a new lot of Starter Reagents is used,
- (e) to assess adequacy of performance of the open integral beyond four weeks, or in agreement with guidelines or requirements of local regulations or accredited organizations.

Control values must lie within the expected ranges: whenever one or both controls lie outside the expected ranges, calibration should be repeated and controls retested. If control values obtained after successful calibration lie repeatedly outside the predefined ranges, the test should be repeated using an unopened control vial. If control values lie outside the expected ranges, patient results must not be reported.

The performance of other controls should be evaluated for compatibility with this assay before they are used. Appropriate value ranges should then be established for quality control materials used.

13. INTERPRETATION OF RESULTS

13.1. Borrelia IgM test

The analyzer automatically calculates *Borrelia burgdorferi* IgM levels expressed as index value and grades the results. For details, refer to the analyzer operator's manual.

Calibrators and controls may give different RLU or dose results on LIAISON®, LIAISON® XL and LIAISON® XS, but patient results are equivalent.

Assay range. 0.1 to 6 index value Borrelia burgdorferi IgM.

The cut-off value discriminating between the presence and the absence of *Borrelia burgdorferi* IgM has an index value of 1.0. Sample results should be interpreted as follows:

Samples with Borrelia burgdorferi IgM levels below an index value of 0.9 should be graded negative.

Samples with Borrelia burgdorferi IgM levels ranging between an index value of 0.9 and 1.1 should be graded equivocal. Equivocal samples must be retested in order to confirm the initial result. Samples which are positive at the second test should be considered positive. Samples which are negative at the second test should be considered negative. A second sample should be collected and tested no less than one week later when the result is repeatedly equivocal.

Samples with Borrelia burgdorferi IgM levels equal to or above an index value of 1.1 should be graded positive.

13.2. Interpretation of results

A negative result for IgM and/or IgG antibodies to *Borrelia burgdorferi* generally indicates that the patient has not been infected, but does not always rule out acute borreliosis, because the infection may be in its very early stage and the patient may be still unable to synthesize *Borrelia burgdorferi* specific antibodies, or the antibodies may be present in undetectable levels. Specific IgM antibodies are more easily detected in the early stages of infection; in later stages they progressively decline. It should be underlined that the test scores negative during the first weeks after infection. If clinical exposure to *Borrelia burgdorferi* is suspected despite a negative or equivocal finding, a second sample should be collected and tested for IgM and IgG later during the course of infection.

A positive result for IgM and/or IgG antibodies to *Borrelia burgdorferi* generally indicates exposure to the pathogen (acute or past infection). A single specimen, however, can only help estimate the serological status of the individual. An isolated positive IgM result is observed relatively often in the early stages of the disease, but rarely in the later stages. An isolated positive IgG result may indicate either active Lyme disease or past infection with persisting antibodies. The following table summarizes the different immunological pictures. Results were obtained using LIAISON® Borrelia assays.

Borrelia burgdorferi IgM result	Borrelia burgdorferi IgG result	Interpretation
negative	negative	No evidence of infection. In case of clinical uncertainty (presence of tick bite or neurological symptoms), the patients should be followed up during time.
positive	negative	Probable infection at an early stage.
negative	positive	Probable infection at any stage.
positive	positive	Probable acute infection.

14. LIMITATIONS OF THE PROCEDURE

Assay performance characteristics have not been established when any LIAISON® Borrelia test is used in conjunction with other manufacturers' assays for detection of specific *Borrelia burgdorferi* serological markers. Under these conditions, users are responsible for establishing their own performance characteristics.

A skillful technique and strict adherence to the instructions are necessary to obtain reliable results.

Bacterial contamination or heat inactivation of the specimens may affect the test results.

Test results are reported qualitatively as positive or negative for the presence of *Borrelia burgdorferi* IgM. However, diagnosis of infectious diseases should not be established on the basis of a single test result, but should be determined in conjunction with clinical findings and other diagnostic procedures as well as in association with medical judgement.

Antibiotic therapy during the early stages of the disease often prevents development of antibody response.

The presence of rheumatoid factor and infectious mononucleosis must be excluded in patients with isolated positive result for *Borrelia burgdorferi* IgM. Polyclonal stimulation of B lymphocytes during infectious mononucleosis, in fact, may result in non-specific induction of synthesis of *Borrelia burgdorferi* antibodies, especially of the IgM class.

Integrals may not be exchanged between analyzer types (LIAISON®, LIAISON® XL and LIAISON® XS). Once an integral has been introduced to a particular analyzer type, it must always be used on that analyzer until it has been exhausted. Due to traceability issues resulting from the above statement, patient follow-ups may not be concluded between analyzer types. These must be accomplished on one particular analyzer type (either LIAISON®, LIAISON® XL or LIAISON® XS).

15. SPECIFIC PERFORMANCE CHARACTERISTICS

15.1. Analytical specificity

Analytical specificity may be defined as the ability of the assay to accurately detect specific analyte in the presence of potentially interfering factors in the sample matrix (e.g., anticoagulants, haemolysis, effects of sample treatment), or cross-reactive antibodies.

Interference. Controlled studies of potentially interfering substances or conditions showed that the assay performance was not affected by anticoagulants (sodium citrate, EDTA, heparin), haemolysis (up to 1000 mg/dL haemoglobin), lipaemia (up to 3000 mg/dL triglycerides), bilirubinaemia (up to 20 mg/dL bilirubin), or by freeze-thaw cycles of samples.

Cross-reactions. As a rule, the presence of potentially cross-reactive antibodies does not interfere in the assay. The antibodies investigated were: (a) immunoglobulins to various infectious agents – such as EBV, *Treponema pallidum* or *Toxoplasma gondii* – (b) anti-nuclear (ANA) antibodies and rheumatoid factor (anti-Fc immunoglobulin) antibodies. The following table summarizes the studies performed.

Clinical condition	Number of cases	IgM positive/equivocal result
Acute primary EBV infection	10	0
Syphilis	5	0
Acute primary toxoplasmosis	14	0
Anti-nuclear antibodies	16	0
Rheumatoid factor	10	0
Total number of specimens tested	55	0

15.2. Precision with LIAISON® Analyzer

Different samples, containing different concentrations of specific analyte, were assayed to estimate repeatability and reproducibility of the assay (i.e., within- and between-assay variability). The results refer to the groups of samples investigated and are not guaranteed specifications, as differences may exist between laboratories and locations.

Repeatability. Twenty replicates were performed in the same run to evaluate repeatability.

Repeatability		Α	В	Negative control	Positive control	
	Number of determinations Mean (index value) Standard deviation Coefficient of variation (%) Min. value Max. value	20 0.571 0.026 4.7 0.519 0.610	20 1.45 0.081 5.6 1.20 1.56	20 0.145 0.010 7.3 0.127 0.163	20 2.27 0.16 7.1 2.00 2.55	

Reproducibility. Twenty replicates were performed in different days (one or two runs per day) to evaluate reproducibility.

Reproducibility	Α	В	Negative control	Positive control
Number of determinations	20	20	20	20
Mean (index value)	0.654	1.53	0.163	2.59
Standard deviation	0.065	0.087	0.017	0.21
Coefficient of variation (%)	9.9	5.7	10.3	8.0
Min. value	0.531	1.35	0.113	2.21
Max. value	0.818	1.69	0.193	2.94

15.3. Precision with LIAISON® XL Analyzer

Different samples, containing different concentrations of specific analyte, were assayed to estimate repeatability and reproducibility of the assay (i.e., within- and between-assay variability). The variability shown in the tables below did not result in sample misclassification.

Repeatability. Twenty replicates were performed in the same run to evaluate repeatability.

Repeatability	1	2	Negative control	Positive control
Number of determinations	20	20	20	20
Mean (index value)	0.537	1.50	0.107	2.05
Standard deviation	0.012	0.038	0.0031	0.090
Coefficient of variation (%)	2.2	2.6	2.9	4.4
Min. value	0.510	1.44	0.0999	1.89
Max. value	0.555	1.58	0.112	2.24

Reproducibility. Twenty replicates were performed in different days (one or two runs per day) to evaluate reproducibility.

Reproducibility	1	2	Negative control	Positive control
Number of determinations	20	20	20	20
Mean (index value)	0.608	1.51	0.125	2.10
Standard deviation	0.046	0.11	0.0062	0.15
Coefficient of variation (%)	7.6	7.6	5.0	7.1
Min. value	0.496	1.24	0.113	1.77
Max. value	0.723	1.69	0.132	2.32

15.4. Precision with LIAISON® XS Analyzer

A five day precision study was conducted on three LIAISON® XS Analyzers to verify the precision with the LIAISON® Borrelia Assay. The CLSI document EP15-A3 was consulted in the preparation of the testing protocol.

A coded panel comprised of 7 frozen samples was used for the study.

The samples could be prepared by pooling samples with similar title in order to represent negative, borderline and positive levels.

The LIAISON® Control Borrelia set was also included in the five day study.

The coded panel was tested on three LIAISON® XS Analyzers, in six replicates in a single run per day, for 5 operative days. The mean Index value, standard deviation, and coefficient of variation (%CV) of the results were computed for each of the tested specimens for each of the instruments and across instruments.

Repeatability. Ninety replicates were performed in the same test to evaluate repeatability. 7 serum samples containing different concentration of analyte and kit controls were assayed in 6 replicates per day, over 5 operating days, on 3 units and one reagent lot.

Repeatability	3	4	5	6	7	8	9	Negative control	Positive control
Number of determinations	90	90	90	90	90	90	90	90	90
Mean (index value)	0.326	0.660	0.842	1.43	1.19	1.12	2.13	0.130	1.65
Standard deviation	0.007	0.013	0.020	0.034	0.039	0.030	0.064	0.003	0.056
Coefficient of variation (%)	2.1	2.0	2.4	2.4	3.3	2.7	3.0	2.7	3.4
Min. value	0.298	0.611	0.762	1.31	1.03	1.00	1.81	0.113	1.42
Max. value	0.346	0.697	0.925	1.55	1.28	1.20	2.32	0.144	1.75

Reproducibility. Ninety replicates were performed in different days (one run per day) to evaluate reproducibility. 7 serum samples containing different concentration of analyte and kit controls were assayed in 6 replicates per day, over 5 operating days, on 3 units and one reagent lot.

Reproducibility	3	4	5	6	7	8	9	Negative control	Positive control
Number of determinations	90	90	90	90	90	90	90	90	90
Mean (index value)	0.326	0.660	0.842	1.43	1.19	1.12	2.13	0.130	1.65
Standard deviation	0.011	0.017	0.028	0.046	0.045	0.036	0.072	0.007	0.059
Coefficient of variation (%)	3.4	2.6	3.3	3.2	3.8	3.2	3.4	5.3	3.6
Min. value	0.298	0.611	0.762	1.31	1.03	1.00	1.81	0.113	1.42
Max. value	0.346	0.697	0.925	1.55	1.28	1.20	2.32	0.144	1.75

15.5. High-dose saturation effect

Whenever samples containing extremely high antibody concentrations are tested, the saturation effect can mimic concentrations lower than real. However, a well-optimized two-step method excludes grossly underestimated results, because the analytical signals remain consistently high (saturation curve).

Analysis of saturation effect for LIAISON® Borrelia IgM II test was evaluated by testing four high-titred serum samples positive for *Borrelia burgdorferi* IgM. All samples resulted in estimated concentration values above the assay range that would be expected with high-titred samples, indicating no sample misclassification.

16. EXPECTED VALUES

16.1. Diagnostic specificity and sensitivity

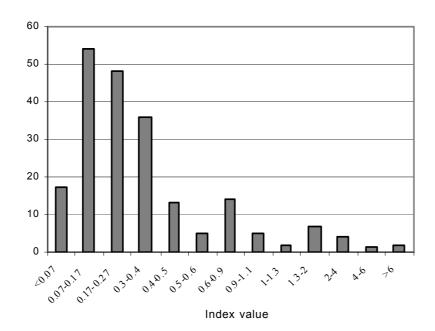
Diagnostic specificity and sensitivity were estimated by testing 229 specimens from different populations coming from collection centers located in endemic areas (Germany). The specimens were tested with several comparison methods and consensus between them, and the available clinical and serological data were applied to define the expected results.

Diagnostic specificity. 88 routine serum specimens from subjects living in an area endemic for borreliosis were graded negative by reference tests (enzyme immunoassay, immunoblot). In the same group of subjects, the LIAISON® Borrelia IgM II test scored negative in 88 out of 88 specimens, with 100% diagnostic specificity (95% confidence interval: 95.9-100%).

Diagnostic sensitivity. 141 serum specimens from patients with clinically characterized Lyme borreliosis were tested in parallel with LIAISON® Borrelia IgM II and IgG tests. The following diagnostic sensitivity data were obtained.

Clinical condition	Number of cases	IgM result		IgG result		IgM + IgG result	
		% positive	95% CI	% positive	95% CI	% positive	95% CI
Erythema chronicum migrans	45	46.7	31.6-62.2	80.0	65.4-90.4	88.9	75.9-96.3
Neuroborreliosis	57	43.9	30.7-57.7	93.0	83.0-98.1	96.5	87.9-99.6
Arthritis	39	25.6	13.0-42.1	97.4	86.5-99.9	97.4	86.5-99.9
Total	141	39.7	31.6-48.3	90.1	83.9-94.5	94.3	89.1-97.5

Equivocal results were not taken into consideration for the calculation of diagnostic sensitivity.


% positive = percentage of positive specimens; 95% CI = 95% confidence interval.

16.2. Prospective study

In a clinical study, 207 routine serum specimens were tested by the LIAISON® Borrelia IgM II test and by an IgM enzyme immunoassay. The immunoblot assay showed discordant results.

The specimens were collected in Germany from subjects investigated for suspected *Borrelia burgdorferi* infection living in an area endemic for borreliosis. The following clinical patterns were observed. The distribution of the prospective population is illustrated in the graph below.

Pattern of Borrelia burgdorferi IgM results		No. of specimens graded	Immunoblot result, No.			
LIAISON® result	ELISA result	(grey zone: 0.9-1.1 index)	Negative	Equivocal	Positive	
negative	negative	165	_	_	_	
positive	positive	11	1	2	8	
equivocal	equivocal	1	0	1	0	
negative	positive	11	6	5	0	
equivocal	positive	0	_	_	_	
equivocal	negative	3	3	0	0	
positive	negative	5	2	2	1	
positive	equivocal	0	_	_	_	
negative	equivocal	11	9	0	2	
Total number of specimens tested		207	21	10	11	

REFERENCES

W. BURGDORFER, A. BARBOUR, S. HAYES, J. BENACH, E. GRUNWALD, J. DAVIS Lyme disease, a tick-borne spirochetosis? Science, **216**: 1317-1319 (1982).

C. EIKEN, V. SHARMA, T. KLABUNDE, M. LAWRENZ, J. HARDMAN, S. NORRIS, J. SACCHETTINI

Crystal structure of Lyme disease variable surface antigen VIsE of *Borrelia burgdorferi*. J. Biol. Chem., **277** (24): 21691-21696 (2002).

B.P. FUNG, G.L. McHUGH, J.M. LEONG, A.C. STEERE Humoral immune response to outer surface protein C of *Borrelia burgdorferi* in Lyme disease: role of the immunoglobulin M response in the serodiagnosis of early infection. Infection Immunity, **62** (8): 3213-3221 (1994).

H. GOOSSENS, A. VAN DEN BOGAARD, M. NOHLMANS Evaluation of fifteen commercially available serological tests for diagnosis of Lyme borreliosis. Eur. J. Clin. Microbiol. Infect. Dis., **18**: 551-560 (1999).

U. HAUSER, H. KRAHL, H. PETERS, V. FINGERLE, B. WILSKE Impact of strain heterogeneity on Lyme disease serology in Europe: comparison of ELISA using different species of *Borrelia burgdorferi sensu lato*. J. Clin. Microbiol., **36** (2): 427-436 (1998).

U. HAUSER, G. LEHNERT, B. WILSKE

Diagnostic value of proteins of three *Borrelia* species (*Borrelia burgdorferi sensu lato*) and implications for development and use of recombinant antigens for serodiagnosis of Lyme borreliosis in Europe.

Clin. Diagn. Lab. Immunol., 5 (4): 456-462 (1998).

K. INDEST, J. HOWELL, M. JACOBS, D. SCHOLL-MEEKER, S. NORRIS, M. PHILIPP Analysis of *Borrelia burgdorferi* VIsE gene expression and recombination in the tick vector. Infection Immunity, **69** (11): 7083-7090 (2001).

S. JAURIS-HEIPKE, R. FUCHS, M. MOTZ, V. PREAC-MURSIC, E. SCHWAB, E. SOUTSCHEK, G. WILL, B. WILSKE Genetic heterogeneity of the genes coding for the outer surface protein C (OspC) and the flagellin of *Borrelia burgdorferi*. Med. Microbiol. Immunol., **182**: 37-50 (1993).

R. KAISER, S. RAUER
Analysis of the intrathecal immune response in neuroborreliosis to a sonicated antigen and three recombinant antigens of *Borrelia burgdorferi sensu* stricto

Eur. J. Microbiol. Infect. Dis., 17: 159-166 (1998).

R. KAISER, S. RAUER

Advantage of recombinant borrelial proteins for serodiagnosis of neuroborreliosis.

J. Med. Microbiol., 48: 5-10 (1999)

M. LAWRENZ, J. HARDMAN, R. OWENS, J. NOWAKOWSKY, A.C. STEERE, G. WORMSER, S. NORRIS Human antibody response to VISE antigenic variation protein of *Borrelia burgdorferi*. J. Clin. Microbiol., **37** (12): 3997-4004 (1999).

F. LIANG, E. ABERER, M. CINCO, L. GERN, C. HU, Y. LOBET, M. RUSCIO, P. VOET, V. WEYNANTS, M. PHILIPP Antigenic conservation of an immunodominant invariable region of the VIsE lipoprotein among European pathogenic genospecies of *Borrelia burgdorferi* sensu lato.

J Infect Dis 182 : 1455-1462 (2000)

MAGNARELLI, M. LAWRENZ, S. NORRIS, E. FIKRIG

Comparative reactivity of human sera to recombinant VIsE and other *Borrelia burgdorferi* antigens in class-specific enzyme-linked immunosorbent assays for Lyme borreliosis.

J. Med. Microbiol., **51**: 649-655 (2002).

J. OHNISHI, J. PIESMAN, A. DE SILVA

Antigenic and genetic heterogeneity of *Borrelia burgdorferi* populations transmitted by ticks. PNAS, **98** (2): 670-675 (2001).

S. PADULA, A. SAMPIERI, F. DIAS, A. SZCZEPANSKY, R. RYAN Molecular characterization and expression of p23 (OspC) from a North American strain of *Borrelia burgdorferi*. Infection Immunity, **61** (12): 5097-5105 (1993).

Cerebrospinal fluid - physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Multiple Sclerosis, 4: 99-107 (1998).

U. SCHULTE-SPECHTEL, G. LEHNERT, G. LIEGL, V. FINGERLE, C. HEIMERL, B. JOHNSON, B. WILSKE Significant improvement of the recombinant *Borrelia*-specific immunoglobulin G immunoblot test by addition of VISE and a DbpA homologue derived from *Borrelia garinii* for diagnosis of early neuroborreliosis.

J. Clin. Microbiol., **41** (3): 1299-1303 (2003).

A.C. STEERE, R. GRODZICKY, A. KOMBLATT, J. CRAFT, A. BARBOUR, W. BURGDORFER, G. SCHMIDT, E. JOHNSON, S. MALAWISTA The spirochetal etiology of Lyme disease. N. Engl. J. Med., 308: 733-740 (1983).

H. TUMANI, G. NÖLKER, H. REIBER Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology, **45**: 1663-1670 (1995).

G. WANG, A. VAN DAM, I. SCHWARTZ, J. DANKERT

Molecular typing of *Borrelia burgdorferi sensu lato*: taxonomic, epidemiological and clinical implications. Clin. Microbiol. Review, **12** (4): 633-653 (1999).

Additional references

V. FINGERLE, F. BONELLI, U. SCHULTE-SPECHTEL, AND B. WILSKE
Detection of specific intrathecal antibody production in early neuroborreliosis by an IgG-ELISA based on a Borrelia garinii VIsE.
Poster presented at the Conference of Lyme Borreliosis and other Tick-borne diseases, Vienna, Sept 2005.

TORBJORN KJERSTADIUS, LOVISA IVARSSON, FREDRIK ARONSSON

Comparison of three commercially available kits for the diagnosis of neuroborreliosis. Poster presented at 11th Lyme Borreliosis International Conference, Irvine, California, USA, October 19-22, 2008.

A. MARANGONI, V. SAMBRI, S. ACCARDO, F. CAVRINI, V. MONDARDINI, A. MORONI, E. STORNI, R. CEVENINI
A Decrease in the Immunoglobulin G Antibody Response against the VISE Protein of Borellia burgdorferi Sensu Lato Correlates with the Resolution of
Clinical Signs in Antibiotic-Treated Patients with Early Lyme Disease.
Clinical and Vaccine Immunology, 13: 525-529 (Apr. 2006).

200/007-920, 12 - 2024-07